[1] BENJAMIN EJ, VIRANI SS, CALLAWAY CW, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation. 2018;137(12):e67-e492.
[2] CHAUDHURI R, RAMACHANDRAN M, MOHARIL P, et al. Biomaterials and cells for cardiac tissue engineering: Current choices. Mater Sci Eng C Mater Biol Appl. 2017;79:950-957.
[3] DREWS JD, MIYACHI H, SHINOKA T. Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status. Trends Cardiovasc Med. 2017;27(8):521-531.
[4] DOMENECH M, POLO-CORRALES L, RAMIREZ-VICK JE, et al. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds. Tissue Eng Part B Rev. 2016;22(6):438-458.
[5] WANG G, MCCAIN ML, YANG L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20(6):616-623.
[6] KENNEDY-LYDON T, ROSENTHAL N. Cardiac regeneration: All work and no repair. Sci Transl Med. 2017;9(383): eaad9019.
[7] NISHIDA K, OTSU K. Autophagy during cardiac remodeling. J Mol Cell Cardiol. 2016;95:11-18.
[8] YANCY CW, JESSUP M, BOZKURT B, et al. 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2016;68(13):1476-1488.
[9] ADAMS KF JR, GIBLIN EM, PEARCE N, et al. Integrating New Pharmacologic Agents into Heart Failure Care: Role of Heart Failure Practice Guidelines in Meeting This Challenge. Pharmacotherapy. 2017;37(6):645-656.
[10] CECCHIN F, HALPERN DG. Cardiac Arrhythmias in Adults with Congenital Heart Disease: Pacemakers, Implantable Cardiac Defibrillators, and Cardiac Resynchronization Therapy Devices. Card Electrophysiol Clin. 2017;9(2): 319-328.
[11] VALENTE TW, PITTS SR. An Appraisal of Social Network Theory and Analysis as Applied to Public Health: Challenges and Opportunities. Annu Rev Public Health. 2017;38:103-118.
[12] YANAMANDALA M, ZHU W, GARRY DJ, et al. Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. J Am Coll Cardiol. 2017;70(6):766-775.
[13] WEINBERGER F, MANNHARDT I, ESCHENHAGEN T. Engineering Cardiac Muscle Tissue: A Maturating Field of Research. Circ Res. 2017;120(9):1487-1500.
[14] DOGAN A, ELCIN AE, ELCIN YM. Translational Applications of Tissue Engineering in Cardiovascular Medicine. Curr Pharm Des. 2017;23(6): 903-914.
[15] YACOUB MH, TAKKENBERG JJ. Will heart valve tissue engineering change the world. Nat Clin Pract Cardiovasc Med. 2005;2(2):60-61.
[16] GÁLVEZ-MONTÓN C, PRAT-VIDAL C, ROURA S, et al. Innovation in cardiology (IV). Cardiac tissue engineering and the bioartificial heart. Rev Esp Cardiol (Engl Ed). 2013;66(5):391-399.
[17] AVOLIO E, CAPUTO M, MADEDDU P. Stem cell therapy and tissue engineering for correction of congenital heart disease. Front Cell Dev Biol. 2015;3:39.
[18] WU YK, YU J. The role of tissue engineering in cellular therapies for myocardial infarction: a review. J Mater Chem B. 2015;3(31):6401-6410.
[19] CHEN QZ, HARDING SE, ALI NN, et al. Biomaterials in cardiac tissue engineering : Ten years of research survey. Materials Science and Engineering: R: Reports. 2008;59(1-6):1-37.
[20] RADHAKRISHNAN J, KRISHNAN UM, SETHURAMAN S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv. 2014;32(2):449-461.
[21] CURTIS MW, RUSSELL B. Cardiac tissue engineering. J Cardiovasc Nurs. 2009;24(2):87-92.
[22] WANG F, GUAN J. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv Drug Deliv Rev. 2010;62(7-8): 784-797.
[23] GEORGIADIS V, KNIGHT RA, JAYASINGHE SN, et al. Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr Biol (Camb). 2014;6(2):111-126.
[24] SOUDERS CA, BOWERS SL, BAUDINO TA. Cardiac fibroblast: the renaissance cell. Circ Res. 2009;105(12):1164-1176.
[25] COULOMBE KL, BAJPAI VK, ANDREADIS ST, et al. Heart regeneration with engineered myocardial tissue. Annu Rev Biomed Eng. 2014;16:1-28.
[26] TULLOCH NL, MURRY CE. Trends in cardiovascular engineering: organizing the human heart. Trends Cardiovasc Med. 2013;23(8): 282-286.
[27] HIRT MN, HANSEN A, ESCHENHAGEN T. Cardiac tissue engineering: state of the art. Circ Res. 2014;114(2):354-367.
[28] SHEN H, WANG Y, ZHANG Z, et al. Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy. Stem Cells Int. 2015;2015: 524756.
[29] CALDERONE A, BEL-HADJ S, DRAPEAU J, et al. Scar myofibroblasts of the infarcted rat heart express natriuretic peptides. J Cell Physiol. 2006;207(1):165-173.
[30] BROWN E, DEJANA E. Cell-to-cell contact and extracellular matrix: Editorial overview: Cell–cell and cell–matrix interactions — running, jumping, standing still. Current Opinion in Cell Biology.2003;15(5): 505-508.
[31] ALREFAI MT, MURALI D, PAUL A, et al. Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning. 2015; 8:81-101.
[32] DOPPLER SA, DEUTSCH MA, LANGE R, et al. Cardiac regeneration: current therapies-future concepts. J Thorac Dis. 2013;5(5):683-697.
[33] DILLEY RJ, MORRISON WA. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair. Int J Biochem Cell Biol. 2014;56:38-46.
[34] TAYLOR DA, SAMPAIO LC, GOBIN A. Building new hearts: a review of trends in cardiac tissue engineering. Am J Transplant. 2014;14(11): 2448-2459.
[35] ORLIC D, KAJSTURA J, CHIMENTI S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701-705.
[36] MUNTER JP, BEUGELS J, MUNTER S, et al. Standardized human bone marrow-derived stem cells infusion improves survival and recovery in a rat model of spinal cord injury. J Neurol Sci. 2019;402: 16-29.
[37] HAMED GM, MORSY WE, HAMID MSA, et al. Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Ischaemic-Reperfused Hearts in Adult Rats with Established Chronic Kidney Disease. Int J Stem Cells. 2019;12(2):304-314.
[38] STRAUER BE, BREHM M, ZEUS T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol. 2005;46(9):1651-1658.
[39] GHODSIZAD A, RUHPARWAR A, BORDEL V, et al. Clinical application of adult stem cells for therapy for cardiac disease. Cardiovasc Ther. 2013;31(6):323-334.
[40] STRAUER BE, STEINHOFF G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol. 2011; 58(11):1095-1104.
[41] BADER A, SCHILLING T, TEEBKEN OE, et al. Tissue engineering of heart valves--human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg. 1998;14(3):279-284.
[42] FERNANDES S, CHONG JJH, PAIGE SL, et al. Comparison of Human Embryonic Stem Cell-Derived Cardiomyocytes, Cardiovascular Progenitors, and Bone Marrow Mononuclear Cells for Cardiac Repair. Stem Cell Reports. 2015;5(5): 753-762.
[43] YU Y, QIN N, LU XA, et al. Human embryonic stem cell-derived cardiomyocyte therapy in mouse permanent ischemia and ischemia-reperfusion models. Stem Cell Res Ther. 2019;10(1):167.
[44] HONG SP, SONG S, LEE S, et al. Regenerative potential of mouse embryonic stem cell-derived PDGFRα+ cardiac lineage committed cells in infarcted myocardium. World J Stem Cells. 2019;11(1):44-54.
[45] MENASCHÉ P, VANNEAUX V, HAGÈGE A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011-2017.
[46] MENASCHÉ P, VANNEAUX V, HAGÈGE A, et al. Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J Am Coll Cardiol. 2018; 71(4):429-438.
[47] MARTINS AM, VUNJAK-NOVAKOVIC G, REIS RL. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev Rep. 2014;10(2):177-190.
[48] FUJITA J, FUKUDA K. Future prospects for regenerated heart using induced pluripotent stem cells. J Pharmacol Sci. 2014;125(1):1-5.
[49] RUSSO V, YOUNG S, HAMILTON A, et al. Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials. 2014;35(13):3956-3974.
[50] CHACHQUES JC, PRADAS MM, BAYES-GENIS A, et al. Creating the bioartificial myocardium for cardiac repair: challenges and clinical targets. Expert Rev Cardiovasc Ther. 2013;11(12):1701-1711.
[51] MINAMI T, ISHII T, YASUCHIKA K, et al. Novel hybrid three-dimensional artificial liver using human induced pluripotent stem cells and a rat decellularized liver scaffold. Regen Ther. 2019;10:127-133.
[52] EMMERT MY, HITCHCOCK RW, HOERSTRUP SP. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev. 2014;69-70:254-269.
[53] DOPPLER SA, DEUTSCH MA, LANGE R, et al. Cardiac regeneration: current therapies-future concepts. J Thorac Dis. 2013;5(5):683-697.
[54] CHOW A, STUCKEY DJ, KIDHER E, et al. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports. 2017;9(5): 1415-1422.
[55] GAO L, GREGORICH ZR, ZHU W, et al. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. Circulation. 2018;137(16):1712-1730.
[56] ZHAO Y, FERIC NT, THAVANDIRAN N, et al. The role of tissue engineering and biomaterials in cardiac regenerative medicine. Can J Cardiol. 2014;30(11):1307-1322.
[57] ISHIDA M, MIYAGAWA S, SAITO A, et al. Transplantation of Human-induced Pluripotent Stem Cell-derived Cardiomyocytes Is Superior to Somatic Stem Cell Therapy for Restoring Cardiac Function and Oxygen Consumption in a Porcine Model of Myocardial Infarction. Transplantation. 2019;103(2):291-298.
[58] NORI S, OKADA Y, NISHIMURA S, et al. Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Reports. 2015;4(3):360-373.
[59] HONG SG, WINKLER T, WU C, et al. Path to the clinic: assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Rep. 2014;7(4):1298-1309.
[60] LI X, YU L, LI J, et al. On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure. Biofabrication. 2016;8(3):035017.
[61] HIDA N, NISHIYAMA N, MIYOSHI S, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26(7):1695-1704.
[62] RAHIMI M, MOHSENI-KOUCHESFEHANI H, Zarnani AH, et al. Evaluation of menstrual blood stem cells seeded in biocompatible Bombyx mori silk fibroin scaffold for cardiac tissue engineering. J Biomater Appl. 2014;29(2):199-208.
[63] ALLICKSON JG, SANCHEZ A, YEFIMENKO N, et al. Recent Studies Assessing the Proliferative Capability of a Novel Adult Stem Cell Identified in Menstrual Blood. Open Stem Cell J. 2011;3(2011):4-10.
[64] FATHI-KAZEROONI M, TAVOOSIDANA G, TAGHIZADEH-JAHED M, et al. Comparative restoration of acute liver failure by menstrual blood stem cells compared with bone marrow stem cells in mice model. Cytotherapy. 2017;19(12):1474-1490.
[65] RADISIC M, PARK H, GERECHT S, et al. Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond B Biol Sci. 2007; 362(1484):1357-1368.
[66] ZAMMARETTI P, JACONI M. Cardiac tissue engineering: regeneration of the wounded heart. Curr Opin Biotechnol. 2004;15(5):430-434.
[67] LEOR J, AMSALEM Y, COHEN S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther. 2005;105(2):151-163.
[68] DHINGRA S, WEISEL RD, LI RK. Synthesis of aliphatic polyester hydrogel for cardiac tissue engineering. Methods Mol Biol. 2014;1181: 51-59.
[69] DUAN Y, LIU Z, O'NEILL J, et al. Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res. 2011;4(5):605-615.
[70] TANDON V, ZHANG B, RADISIC M, et al. Generation of tissue constructs for cardiovascular regenerative medicine: from cell procurement to scaffold design. Biotechnol Adv. 2013;31(5):722-735.
[71] HASAN A, KHATTAB A, ISLAM MA, et al. Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction. Adv Sci (Weinh). 2015;2(11):1500122.
[72] REIS LA, CHIU LL, WU J, et al. Hydrogels with integrin-binding angiopoietin-1-derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circ Heart Fail. 2015;8(2):333-341.
[73] PAVO N, CHARWAT S, NYOLCZAS N, et al. Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences. J Mol Cell Cardiol. 2014;75:12-24.
[74] NAWROTH JC, SCUDDER LL, HALVORSON RT, et al. Automated fabrication of photopatterned gelatin hydrogels for organ-on-chips applications. Biofabrication. 2018;10(2): 025004.
[75] ZIMMERMANN WH, DIDIÉ M, DÖKER S, et al. Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res. 2006;71(3):419-429.
[76] FAROUZ Y, CHEN Y, TERZIC A, et al. Concise review: growing hearts in the right place: on the design of biomimetic materials for cardiac stem cell differentiation. Stem Cells. 2015;33(4):1021-1035.
[77] MATSUURA K, SHIMIZU T, OKANO T. Toward the development of bioengineered human three-dimensional vascularized cardiac tissue using cell sheet technology. Int Heart J. 2014;55(1):1-7.
[78] MORIMOTO Y, MORI S, SAKAI F, et al. Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip. Lab Chip. 2016;16(12):2295-2301.
|